

Assembly Language Programming
Atmel Microprocessors

using the
Linux Operating System

Peter D. Hiscocks
Syscomp Electronic Design Limited
Email: phiscock@ee.ryerson.ca
7 February 2017

Arduino + AVRISP Programmer

Why Atmel?

● Many different parts available: ATTiny to ATXMega.

● Excellent feature set.

● Readily available, reasonable price.

● Large ecosystem: eg, Arduino boards, open-source software,
hundreds of hardware shields (interfaces).

● Low and medium complexity units have DIP package.

● Inexpensive development tools: eg, AVRISP $39

● Clean, regular archictecture (mostly)

Syscomp Circuitgear Mini
uses ATXmega processor

Memory Map for Atmel Microprocessor
Harvard Architecture

Typical Arduino Schematic

Why Assembly Language?

Assembly Code Example

USART_Receive:

 ; Wait for data to be received
 in r17, UCSR0A
 sbrs r17, RXC
 rjmp USART_Receive

 ; Get and return received data from buffer
 in r16, UDR0
 ret

C Code Example

unsigned char USART_Receive(void)
{
 /* Wait for data to be received */
 while (!(UCSR0A & (1<<RXC)))
 ;
 /* Get and return received data from buffer
*/
 return UDR0;

Why Assembly Language (2)?

● For small programs acting as a 'hardware replacement', not
much difference between Assembly Language and C.

● Better approach when teaching microprocessor hardware

● Easier understanding code timing issues.

● Simpler programming environment:
● Assembler vs Compiler-Libraries-Assembler-Linker

● Explicit control over parameter structures in call-return
sequence.

Development Process

● Write the program using a text editor: foo.asm
● Assemble the program using an assembler:

avra or gavrasm: foo.hex
● Upload foo.hex into the hardware using

AVRDUDE program and AVRISP hardware or
equivalent.

● Run the program.
● Debug using a serial monitor program.

; Send Character
; This program sends a character out the serial port. The purpose is to
; establish that the microprocessor UART and the computer terminal program
; are configured correctly.
; Terminal program on the host Linux computer: cutecom
; Configuration: 8N1, 9600 baud.
; Reference:
; ATmega168 datasheet, page 237

; Assemble the program.
; Use the AVRISP II programmer to program the Diecimila circuit board
; with the file ’send-char.hex’.
; Connect the USB port on the Diecimila board to the host computer.
; Run cutecom at 8N1, 9600 baud, connected (probably) to ttyUSB0
; Reset the Diecimila board, characters should appear on the terminal.

; Assemble with: gavrasm send-char.asm
; Download with: avrdude -p m168 -c avrisp2 -U flash:w:send-char.hex
; Tested operational 7 March 2017

.DEVICE ATmega168

.CSEG ; strictly speaking not necessary

.ORG 0
rjmp main ; reset vector points to Main

.ORG 0x100
; stack is not used so SP not initialized.
main:
; Calculate the baud rate constant and set the baud rate
; fosc = 16000000 ; Diecimila crystal oscillator, 16MHz
; baud = 9600
; baudconst = (fosc / (16 x baud)) -1 ; Calculate the baud constant
.equ baudconst = 103
.equ baudlo = low(baudconst)
.equ baudhi = high(baudconst)

Hello World for Assembly Language

; Set the Tx port line PD1 to output
ldi r16, 0b00000010
out ddrb, r16

; Set the baud rate register
ldi r16, baudlo
sts UBRR0L,r16
ldi r16, baudhi
sts UBRR0H,r16

; Enable the receiver and transmitter
ldi r16, 0b00011000
sts UCSR0B,r16

; Set the frame format: 8 data bits, one stop bit, no parity
ldi r16, 0b00000110
sts UCSR0C,r16

; Now send a stream of the same character.
USART_Transmit:

lds r17, UCSR0A

; Wait for empty transmit buffer
sbrs r17, UDRE0 ; Skip if bit UDRE is set, transmit is complete
rjmp USART_Transmit

ldi r16, "p" ; Send the character
sts UDR0, r16

wait: inc r18
brne wait

; Delay between characters
rjmp USART_Transmit ; and repeat forever

Hello World for Assembly Language

Hello World for Assembly Language

Serial Monitor for Debugging

● A small program (usually written in assembler) that resides
in memory with the program under test.

● Can dump memory locations, test hardware, set
breakpoints etc.

● Requires some machine resources: serial port, small
amount of memory.

● Can reside in protected memory so it survives reset and
reprogramming.

● Communicates with a serial terminal on the host
(cutecom).

Alternative Environment
AVR Studio: Windows Only (maybe)

http://www.avrfreaks.net/sites/default/files/HOWTO-AVRStudio%20in%20Ubuntu.pdf

Alternative Environment

C Language Programming
Atmel microprocessors

under Linux:

gcc-avr

https://gcc.gnu.org/wiki/avr-gcc

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

